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Poiseuille flow 

By D A N  S. HENNINGSONt AND P. HENRIK ALFREDSSON 
Department of Mechanics, The Royal Institute of Technology, S-100 44 Stockholm, Sweden 

(Received 18 January 1986 and in revised form 14 October 1986) 

The wave packets located at  the wingtips of turbulent spots in plane Poiseuille flow 
have been investigated by hot-film anemometry. The streamwise velocity disturb- 
ances associated with the waves were found to be antisymmetric with respect to the 
channel centreline. The amplitude of the waves had a maximum close to the wall that 
was about 4 % of the centreline velocity. The modified velocity field oiitside the spot 
was measured and linear stability analysis of the measured velocity profiles showed 
that the flow field was less stable than the undisturbed flow. The phase velocity and 
amplitude distribution of the waves were in reasonable agreement with the theory, 
which together with the symmetry properties indicate that the wave packet consisted 
of the locally least stable Tollmien-Schlichting mode. 

1. Introduction 
If a wave-like disturbance is introduced by a vibrating ribbon into a laminar 

boundary layer (Klebanoff, Tidstrom & Sargent 1961) or Poiseuille flow (Nishioka, 
Iida & Ichikawa 1975) the linear hydrodynamic stability theory is able to predict 
whether the resulting Tollmien-Schlichting (T-S) waves are amplified or not. For 
Poiseuille flow the linear theory gives the critical Reynolds number (Re), i.e. the 
Reynolds number below which no wave disturbance is amplified, as 5772 (based on 
centreline velocity and channel half-height) (Orszag 1971). Nishioka et al. found that 
the linear theory was valid until the amplitude of the waves reached a few percent 
of the centreline velocity. Then the growth rate became higher than the exponential 
growth predicted by the theory. Hence it seems that when the amplitude reaches this 
level nonlinear effects start to become important. 

The vibrating-ribbon experiments confirm the applicability of the linear stability 
theory, however, growth of two-dimensional waves is not the only route to transition. 
Gaster & Grant (1975) introduced a point-like disturbance into a laminar boundary 
layer and found that it gave rise to a bow-shaped wave packet, which grew in size 
and amplitude as it travelled downstream. Gaster (1 975) was able to model the wave 
packet development by calculating the spatial growth rates for the least stable mode 
of an initial disturbance with a flat spectrum. The wave packet was then calculated 
as a linear combination of all wavenumbers, and excellent agreement between 
experiments and calculations was obtained. It was possible to follow the disturbance 
over more than one hundred boundary-layer thicknesses before signs of nonlinear 
effects began to appear in the experiments. These would ultimately lead to breakdown 
and generation of a turbulent spot. 

Experimentally one finds that if the amplitude of the point disturbance and the 
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FIGURE 1. Development of a turbulent spot in plane Poiseuille flow, Re = 1600. The full lines 
indicate the edges of the turbulent regions. + , spot triggering position. 

Reynolds number of the flow are high enough a turbulent spot may develop without 
the intermediate steps of wave formation and growth. For plane Poiseuille flow on 
the one hand turbulent spots may be triggered and sustained even at  Re = lo00 
(Carlson, Widnall & Peeters 1982; Alavyoon, Henningson & Alfredsson 1986), i.e. at  
a Reynolds number six times lower than the critical Reynolds number obtained from 
the linear stability theory. In boundary layers, on the other hand, spots are not 
usually obtained until well above the critical Reynolds number (see e.g. Wygnanski, 
Haritonidis & Kaplan 1979). 

Both in boundary layers and plane Poiseuille flow one finds wave packets in 
conjunction with turbulent spots. Wygnanski et al. (1979) discovered wave packets 
upstream of the ‘wingtips’ of the spot, one on each side of the spot symmetry line. 
These wave packets moved with a lower celerity than the trailing edge of the spot 
and thus became detached from the spot. They found that the wave packets had much 
in common with the outer parts of the wave disturbance studied by Gaster & Grant 
(1975). Chambers & Thomas (1983), using flow visualization, concluded that the 
initial disturbance gives rise both to a turbulent spot and a wave packet and that 
these, due to their different celerities, are separated and become independent of each 
other. 

The development of the wave packet in plane Poiseuille flow is quite different, 
however. Flow visualizations (Carlson et al. 1982; Alavyoon et al. 1986) have shown 
that the wave packet is attached to the ‘wingtips’ of the spot and follows the spot 
as it moves downstream (see figure 1,  unpublished data from the study of Alavyoon 
et al. 1986). It has been hypothesized that the wave packets consist of T-S waves 
although such waves should be damped at  the Reynolds number of these experiments 
( R e  = 1000-2500). However, as the spot moves slower than the surrounding back- 
ground flow it acts as a blockage (Widnall 1984) and the laminar flow field outside 
the spot will be altered. This may change the stability properties of that region. If 
the wave disturbance is amplified i t  may break down and thereby be responsible for 
the spreading of the spot. 

The main motive of this study was to investigate the wave packets observed at  
the wingtips of turbulent spots in plane Poiseuille flow. Both the wave packet 
structure itself and the alteration of the velocity field outside the spot were studied. 
This was complemented by linear stability analysis of the measured velocity field. 
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2. Experimental apparatus and technique 
The apparatus was that used by Alavyoon et al. (1986) and is shown in figure 2. 

The channel section consists of two parallel flat glass plates and was 2 m long x 0.83 m 
wide. The channel height .could easily be varied by using spacers of different 
dimensions, although all results presented in this study were taken with a channel 
height (2h) of 5 mm. The height was checked with a microscope technique (for a 
description see Alavyoon et al.) and was found to be constant within f 3 yo. The 
main part of the measurements was carried out at a Reynolds number of 1500, 
corresponding to a centreline velocity of about 0.60 m/s. The spots were triggered 
by a solenoid which produced a jet of water of small diameter and duration, which 
entered the channel from the upper wall. Two positions were used for the triggering, 
namely 0.4 and 1.0 m from the downstream end of the channel. At  the measurement 
position this corresponds to x/h = 160 and 400, respectively. (z and z are the 
coordinates in the streamwise and spanwise directions, respectively: x = 0 is at the 
triggering point and z = 0 is at the spot symmetry line, y is the coordinate normal 
to the walls, with y = 0 at the channel centreline. In  the following all quantities are 
made non-dimensional in the appropriate way with the channel half-height (h) and 
the undisturbed centreline velocity ( UcL).) 

The velocity measurements were carried out with hot-film probes (DISA R15 and 
TSI 1261-1OW) using the DISA 55M01 anemometers. The probes could be calibrated 
in a submerged water jet and were positioned in the flow from the end of the channel, 
i.e. they intruded only a few mm into the channel. We believe that end effects were 
small, which is substantiated by the fact that the measured velocity profiles were very 
close to the expected parabolic one. All data sampling and evaluation was carried 
out with a DEC MINC-system (PDP11/23). The solenoid was activated manually 

FIGURE 2. Experimental apparatus. Spot triggering position was 0.4 and 1.0 m from the 
measurement position. 

The results predicted from the analysis were fairly close to the measured wave 
properties and it was also found that the region outside the spot was less stable than 
the undisturbed flow. 
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and at the same time the data acquisition was started through the Schmitt-trigger 
of the MINC-system. 

To measure the spanwise velocity component the probe was positioned so that the 
normal of the sensor was at  an angle @ to the streamwise direction. Then the effective 
cooling velocity sensed by the hot-film becomes 

U~ool/cos2 $ = (Up + u + w tan @)2 + q2(w - (Up + u)  tan $)2, 

where r] is the tangential cooling coefficient and u and w are corrections to the mean 
parabolic profile, Up(y). By calibrating the probe in situ with the same angle as in 
the measurement, the tangential-cooling correction term resulting from the Up 
velocity (i.e. r]2Pp tan2 $) is automatically taken into account. What remains after 
a Taylor expansion is an expression of the form: 

For @ around 45’ the DISA probe has r] x 0.35. The deviations u and w are typically 
about 10% of the mean velocity. Thus the error in (1) is a few percent. If u is 
determined from measurements with @ = 0 then w may be calculated from (1). 

3. Experimental results 
3.1. Spot spreading angle 

In this study the contraction section was slightly modified as compared to that of 
Alavyoon et al. (1986). This led to an increase in the Reynolds number (from 2200 
to 3100) for which spontaneous transition occurred. Some results for the spot 
spreading half-angle (9) obtained from flow visualization have been reported earlier. 
In this study another approach to determine the spreading angle was adopted. A 
hot-film probe was located at  the downstream end of the channel at the spanwise 
position where about one out of ten spots gave rise to a turbulent signal. This position 
was then used to calculate the spreading angle (figure 3). The results agree fairly well 
with the data of Alavyoon et al., although if there is a change in the virtual origin 
with Reynolds number, this is not taken into account in the present method. For 
the largest spreading angles there may be some effects of the channel sidewalls since 
the spot covered about 60 yo of the channel width. 

3.2. Wave structure 
Figure 4 shows typical streamwise velocity signals at 7 different y-positions at  
x = 400 and z = 62, i.e. about two channel heights outside the turbulent part of the 
spot. The Reynolds number here and in all following measurements was 1500. The 
wave amplitude was largest, almost 4 %  of the centreline velocity, at y = 0.7. A t  
y = 0.4 waves were occasionally found, whereas no waves were found in the region 
y < 0.4. A feature in common for all y-positions was an increase in the velocity in 
the region of the wave packet. The same feature was found also at  x = 160. From 
these two measurements the propagation velocity of the region of excess velocity was 
found to be about 0.75. 

To separate the wave disturbance from the change in velocity, digital filtering using 
fast Fourier transform (FFT) routines was used. First the forward FFT was carried 
out : then inverse transforms were performed separately on the parts of the frequency- 
domain signal above a certain frequency (to obtain the waves) and below (to obtain 
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FIQURE 3. Spreading half-angle of spot v8. Re. 0, present results; -, best-fit line to data of 
Alavyoon et al. (1986). 
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FIQURE 4. Velocity signals at seven different heights outside the wingtip of the spot. 
x = 4 0 0 , ~  = 62. t = 0 is at the triggering time. 
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FIGURE 5. Original, low-pass- and high-pass-filtered velocity signals at y = 0.7. The Fourier 
coefficients have been set equal to zero above, and below o = 0.16 respectively. 
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FIGURE 6. Amplitude dependence of the streamwise velocity disturbance obtained from two 
independent measurement series. x = 400, z = 62. A, A, experiment; ----, -, theory according 
to $4. 

the change in velocity). The choice of this filter frequency was not critical. Figure 
5 shows a typical example. 

The wave-amplitude distribution in the streamwise direction was determined by 
ensemble averaging the high-pass-filtered velocity signals of ten spot passages at  each 
wall distance. Ten spots were judged to be sufficient since the flow was laminar and 
the repeatability good. However, if the spot triggering time was used as reference 
time for the averaging, too much phase jitter resulted. The approach adopted was 
to determine the highest wave peak and use this maximum as a reference for the 
ensemble averages. The two minima around the maximum of the ensemble average 
were used to evaluate the wave amplitude. Figure 6 shows the results at 
x = 4 0 0 , ~  = 62 from two independent measurement series. It is worth noting that 
the velocity disturbance associated with the wave packet was about 30% smaller 
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of the u-disturbance. x = 400, z = 62. -, y = -0.7; ----, y = 0.7. 
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FIGURE 9. Time delay for wave packet aa function of downstream separation. The reference probe 
is at x = 4 0 0 , ~  = 62. 0,  Az = -2; A, Az = 2; 0, Az = 4. 

when measured normal to the wave fronts (not shown in the figure) than in the 
streamwise direction. These results will be further discussed in $4 in conjunction with 
the theoretically determined amplitude distributions. 

The symmetry properties of the wave packet were investigated by the use of two 
probes. One probe (DISA R15) was positioned close to the lower wall while the other 
(TSI 1260-1OW) was mounted on a three-degrees-of-freedom micrometer-controlled 
traversing mechanism, so that its sensor could be located close to the upper wall and 
above the sensor of the DISA-probe. Each probe was positioned at the y-locations 
where the wave amplitude was close to its maximum value, at the lower and upper 
walls, respectively. The high-pass-filtered anemometer voltage signals shown in 
figure 7 clearly show that the u-disturbance associated with the wave packet was 
antisymmetric. However, other disturbances were seen as well and these were 
symmetric. They occurred randomly in time, even when no spot was present, and 
their amplitude was much smaller than that of the wave packets of interest. 

To characterize the wave packet we determined the angular frequency (w) ,  phase 
velocity in the streamwise direction (c), wavelength (or wavenumber (k = (aa++$){), 
where a and /3 are the wavenumbers in the streamwise and spanwise directions, 
respectively) and inclination (#, defined as the angle between the streamwise direction 
and the wavenumber vector). For this two probes were used simultaneously, one 
probe was used as a reference at a fixed position, while the other was movable (see 
figure 8). Both probes were positioned close to the lower wall where the wave 
amplitude had its maximum and the time difference between the two signals was 
determined as a function of the downstream separation. Figure 9 shows the relation 
for three spanwise positions, where each point represents an average over three wave 
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FIGURE 10. Ensemble-averaged, low-pass-filtered velocity signals outside the wingtip of the 
spot. x = 400, z = 62. 

packets. There is a linear relation between the time difference and the downstream 
distance, and the slope of this line gives the phase velocity. The wavenumber in 
the streamwise direction was calculated as a = w / c ,  and w was obtained from the 
measured time separation of the first two maxima and minima of the signals. If the 
probes were positioned in such a way that the time difference was zero, then they 
would be aligned along the wave crests and the inclination angle could easily be 
determined. This position can be obtained by extrapolation from figure 9. The 
measured wave properties together with results from earlier visualization studies are 
shown in table 1. 

3.3. Velocity field outside the spot 
Outside the turbulent part of the spot both the streamwise and spanwise velocity 
components change (the latter is zero for the undisturbed flow). Typical ensemble 
averages of the low-pass-filtered streamwise velocity signals at seven different 
y-positions (z = 400, z = 62), where the average at each position consisted of ten 
different spots, are shown in figure 10. The triggering time was chosen as the reference 
time. The velocity profiles were obtained by fitting modified parabolas to these 
ensemble-averaged velocity measurements. The expression used for the velocity 
profiles was : 

WY,t) = (1-Y2) (C,(t)+C,(t)Y2+C2(t)Y4), (2) 
14-2 
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2 4(", w c k 

160 (hot film) 64 0.44 0.53 1.89 
400 (hot film) 40 0.40 0.38 1.37 
400 (visual) 40 

TABLE 1.  Wave properties at Re = 1500 
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FIGURE 11. Measured and fitted streamwise mean velocity profiles at three different spanwise 
positions for x = 400. ----, parabolic profile; 0, z = 60; -, fitted profiles; A, z = 60, t = 518; ., z = 62,t = 518; A, z = 94,t = 518. 

where C,, C,, C, were determined by a least-squares fit. This gave a series of profiles 
each representing the velocity outside the spot at a specified time. Figure 11 shows 
the measured undisturbed profile which was found to be close to parabolic. Three 
measured profiles at t = 518 a t  various spanwise positions are also shown, together 
with the fitted profiles (equation (2)). One may note that the region of excess velocity 
has a fairly large extent in the spanwise direction. 

Figure 12 shows ensemble-averaged W-profiles in the region where the waves &re 
seen. The measurements were made with the technique described in $2. Downstream 
of the spot the flow direction was towards the symmetry plane over the whole channel 
width. When the wingtip has passed, the flow close to the wall was still in the same 
direction, whereas the flow in the centre of the channel was away from the spot. 
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FIGURE 12. Spanwise velocity profiles at 2 = 400, z = 62. 

4. Stability calculations 
The laminar velocity field outside a turbulent spot is significantly altered by the 

presence of the spot. If the flow field is considered to be quasi-steady and quasi- 
homogeneous its stability properties can be analysed using the OrrSommerfeld 
equation. This assumption may be justified by noting that the wavelength is an order 
of magnitude smaller than the lengthscale of the mean flow variation (figure 4). 

The main reason for carrying out stability calculations was to find out if the 
measured properties of the oblique waves a t  the wingtips could be reproduced by the 
linear stability theory. Oblique waves may be transformed with Squire’s transform- 
ation to equivalent two-dimensional waves and compared with the solution to a 
two-dimensional Orr-Sommerfeld equation. By using an extended Squire’s trans- 
formation one can not only transform oblique waves, but also waves superimposed on 
a mean velocity field having a spanwise component, to an equivalent two-dimensional 
problem (Landahl & Mollo-Christensen 1986 p. 93; see also Appendix). This is done 
by interchanging the usual U(y) velocity in the Orr-Sommerfeld equation to the 
following expression : 

U(Y) + W(Y) tan 4 

where 4 is the angle of the wavenumber vector to the streamwise direction. If the 
hot-film sensor is positioned normal to the wavenumber vector (i.e. $ = 4) it  turns 
out that nominally this combination of the velocity components is measured (see 
equation (1)). 

To get a measure of the departure of the fitted velocity profiles from the parabolic, 
the shape factor was calculated. The shape factor is the ratio between the displace- 
ment (8,) and the momentum-loss (0) thicknesses, and may may be used as a 
measure of the fullness and hence the stability of the profile. The shape factor for 
the parabolic profile is 2.5 and the results from four measurements at z = 400 and 
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FIGKRE 13. Shape-factor variation during spot passage at x = 400, z = 62. A, A, two independent 
U velocity measurement; 0,  ., two independent U +  W tan $ velocity measurement. 

z = 62 are shown in figure 13. The two that include the spanwise component have 
a maximum of a higher magnitude than those without, indicating that the spanwise 
component has a destabilizing effect. When the spanwise velocity is included the 
maximum occurs at a later time which corresponds to the time when the waves are 
first observed in the measurements. 

4.1. Eigenvalues and group velocities 
The Orr-Sommerfeld equation was solved to obtain the complex eigenvalues c,  where 
the real part c, is the phase velocity in the streamwise direction and the imaginary 
part ci determines the growth or decay of the waves. It was solved with a shooting 
method using a fourth-order Runge-Kutta scheme. By orthonormalization of the 
eigenfunction (see Conte 1966) and stretching the y-coordinate close to the wall the 
accuracy of the solution was increased. The program was checked against known 
eigenvalues for the parabolic profile (Orszag 1971) and good agreement was obtained. 

Calculations were made for measurements a t  both streamwise positions but only 
results from z = 400 will be presented here, since this was the only position where 
the spanwise component was measured. The eigenvalues c were calculated for the 
least damped symmetric mode for each series of profiles using the measured wave 
parameters (k = 1.37,$ = 40' and Re = 1500) as input. The absolute magnitude of 
the eigenvalues was sensitive to the variation of the fitted profiles, however, their 
qualitative variations were reproducible as they varied in time during the passage 
of the spot. The measured profiles had a somewhat higher value of c, than the 
parabolic profile (table 2), but the variation was as large as k 10 yo. 

The variations of ci at x = 400 and z = 62 during the spot passage are shown in 
figure 14. To be able to compare the qualitative features of ci the departure from the 
parabolic case (cipar =-0.026) is plotted with the maximum of each separate 
calculation series normalized to one. This way of plotting was chosen to show that 
the trends were reproducible even though the absolute magnitude of ci varied. The 
destabilizing effect of the spot passage is clearly seen. Note the difference between the 
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- 1  

Cr ci ‘8% ‘82 arctan (‘8Z/‘,Z) 

U 0.42 -0.01 0.50 0.12 13’ 

Parabola 0.39 -0.026 0.451 0.102 12.8’ 
U +  Wtanq5 0.42 0.01 0.55 0.12 12O 

TABLE 2. Typical calculated wave properties at t = 518 for k = 1.37, g5 = 40°, Re = 1500 
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FIGURE 14. Instability parameter for four measured velocity profiles at x = 400, z = 62. 
For symbols, see figure 13. 

calculations with only the streamwise component and those where the velocity profile 
included the spanwise component. The difference is consistent with the variation of 
the shape factor (figure 13) showing that the most unstable waves are found at a later 
time when the spanwise velocity component is included in the mean velocity profile. 
The inclusion of the spanwise velocity actually made the waves unstable (i.e. ci > 0), 
whereas they were always damped (i.e. c , < O )  if the spanwise component was 
disregarded (see table 2). 

The two components of the group velocity for the considered wavenumber can be 
obtained by calculating the derivatives of c with respect to the wavenumbers a and 
p, and using Squire’s transformation. The result is: 

- a3 Pa ac2 Read: P a  ac, cgz - - -- cgz = c2+--  a: ac2+Re3a3&& 

k aa, k8 aRe,’ k aa, k3 aRe,’ 

where the subscripts 2 and 3 refer to the two- and three-dimensional form of the 
Orr-Sommerfeld equation, respectively (see Appendix). When the group velocities 
were calculated the real parts of the eigenvalues were used. This can be justified if 
the imaginary part of the phase velocity is small and the propagation of the wave 
packet is considered only for small times (see Landahl 1982). 

The calculations showed an increase of both the streamwise and spanwise 
components of the group velocity when the altered velocity profiles were used. The 
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increase waa largest when the spanwise velocity component was included in the mean 
velocity profile (table 2). However, the calculated group velocity was smaller than 
the measured wingtip velocity. The angle of the group velocity vector to the 
streamwise direction remained approximately the same at 12'-13'. This angle waa 
a few degrees greater than the spreading angle of the spot at the corresponding 
Reynolds number. 

4.2. Eigenfunctions and amplitude variations 
The vertical amplitude variation of the streamwise velocity component of the wave 
disturbance may be found by first calculating the eigenfunction of the normal 
velocity, and then using it in a forcing term when solving for the streamwise velocity 
(see Appendix). The symmetry properties of the normal and streamwise disturbance 
velocity components are opposite (this can be found by examining the corresponding 
equations). The eigenvalues previously calculated were for the least damped sym- 
metric mode, this means that the corresponding amplitude dependence for the 
streamwise disturbance velocity is antisymmetric, in agreement with the experiments 
(figure 7). The calculated streamwise amplitude dependence (using equation (A l), 
at z = 400, z = 62, t = 518) showed good agreement with the measured wave ampli- 
tudes (see figure 6, the two curves represent two independent measurement series). 
The amplitude of the waves in the direction of the wavenumber vector was also 
calculated (see Appendix) and was found to be smaller than the streamwise 
amplitude, in agreement with experiments. This was anticipated since the change in 
the horizontal velocity resulting from the displacement of fluid elements normal to 
the wall by the wave is proportional to the normal gradient of the mean flow in the 
direction considered. In this case the gradient of the streamwise component is much 
larger than that of the spanwise. 

5. Discussion and conclusions 
Boundary-layer spots have a spreading half-angle of typically 10' independent of 

the Reynolds number (Wygnanski, Zilberman & Haritonidis 1982), whereaa the 
spreading rate of turbulent spots in plane Poiseuille flow increases nearly linearly 
with Reynolds number. For large (but still subcritical) Reynolds numbers it is 
substantially higher in plane Poiseuille flow. This may indicate that the spreading 
mechanism is different for the two cases, and that the observed wave packets play 
an important role in the spreading in the case of plane Poiseuille flow. The properties 
of these waves were compared to those calculated using the Orr-Sommerfeld equation 
with the measured velocity profiles and wavenumber vector of the observed waves 
as input. The phase speeds agreed approximately, the symmetry properties were 
correct, i.e. the u-disturbance was antisymmetric which implies symmetry in v, and 
the calculated y-dependence of the streamwise velocity disturbance was in fair 
agreement with the measured data. These results indicate that the assumptions of 
a quasi-steady and quasi-homogeneous mean flow field is justified, and the conclusion 
may be drawn that the observed wave packet consisted of the least damped 
symmetric T-S eigenmode. 

The profiles of the spanwise velocity shows a velocity towards the spot downstream 
and a velocity away from the spot upstream of the wingtip. This is consistent with 
the idea of Widnall(l984) that the spot may be considered as an area of partial flow 
blockage. One may also note however, that the spanwise velocity close to the wall 
always seems to be directed into the spot. 
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The possibility of directly measuring the required mean velocity profile in the 
generalized Orr-Sommerfeld equation is demonstrated in the present paper. This 
results in good accuracy since there is no need to obtain the spanwise velocity 
explicitly as a difference of two measured signals, and since only one sensor is needed 
good spatial resolution is obtained. When the spanwise component was taken into 
account the calculated growth rate became positive with its maximum found at the 
time when the waves were observed. 

In  previous work (see e.g. Gad-el-Hak, Blackwelder & Riley 1981) a possible 
explanation for the rapid spanwise growth of a turbulent spot has been ‘growth by 
destabilization ’. Our calculations did indeed indicate that the flow outside a spot was 
less stable than the undisturbed laminar flow. However, the calculated growth factor 
of 0.01 is too small in itself to explain breakdown, since it would take about 15 channel 
heights for the waves to double in amplitude. 

Another possible mechanism for the build-up of the rather large wave amplitudes 
may be the wave trapping mechanism proposed by Landahl (1972). He used it to 
explain the transition process in a boundary layer disturbed by a vibrating ribbon 
and found that when the group velocity of a small scale (secondary) disturbance is 
equal to the phase velocity of a large scale (primary) disturbance the wave energy 
is trapped and breakdown occurs. In  our measurements a similar situation existed, 
where the wave packet coincided with a large-scale velocity disturbance. This region 
of excess velocity outside the wingtip could be considered as the primary wave and 
the smaller scale T-S waves as the secondary waves. The calculated group velocity 
of the T-S waves increased (from about 0.45 to around 0.55) when the altered velocity 
field was used in the Orr-Sommerfeld calculation, but it was always smaller than the 
propagation velocity of the area of excess velocity where the waves were observed 
(about 0.75). 

Once the T-S waves have acquired their rather large amplitude they may become 
unstable to smaller scale three-dimensional disturbances, which may result in break- 
down. This route to transition has been observed both experimentally (Klebanoff 
et al. 1961 ; Nishioka et al. 1975) and theoretically (Orszag & Patera 1983). 

Finally, it is not yet clear how or why the specific waves observed were singled out 
from all the possible solutions to the Orr-Sommerfeld equation. Widnall (1984) 
calculated the far-field wave pattern from a moving point disturbance. She assumed 
the wave pattern to be stationary in the frame of reference of the disturbance. The 
wave pattern in the wingtip area was in qualitative agreement with spot flow 
visualization. The present work showed, however, that the wave crests are not 
stationary with respect to the spot, their phase velocity was around 0.4 which is much 
smaller than the celerity of the wingtip (0.75). 

The present study was supported by STU, the Swedish Board for Technical 
Development. 

Appendix 
An extended form of the Orr-Sommerfeld equation can be obtained by linear- 

izing the Navier-Stokes equations around a mean flow of the form (U3(y),0, 
W(y)) and separating the disturbance variables into Fourier components e.g. 
v 3 ( q  y, z, t )  = 6,(y; a,, b3, c3) exp {i(za, + zB3-a3 c3 t ) ) ,  the subscript 3 indicates that 
we are considering the three-dimensional version of the Orr-Sommerfeld equation). 
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After the pressure is eliminated the following equation for the Fourier components 
for the normal disturbance velocity can be obtained: 

(U,+Wtan#-c,)(de/dy2-k2)8,-(U~+W" tan$)a,- (d2/dY2-ks)z~3 = 0. 
ia, Re, 

The two-dimensional version reads as follows : 

(d2/dy2 - a:), 8, 
ia, Re, 

( U, - c,) (d2/dy2 -a;) 8, - Ui  8, - = 0, 

where the subscript 2 refers to the two-dimensionality. The eigenvalue problems are 
seen to  be equivalent if the following holds 

c, = c,, a, = k, Re, = Re, cos#, U, = U,+ W tan#, 

where we have used a, = k cos#. This is, in fact, an extended form of Squire's 
transformation (see Landahl & Mollo-Christensen 1986 p. 93). 

An equation for the Fourier components 4, and 8, of the streamwise and spanwise 
disturbance velocities, respectively, cam be obtained in a manner similar to that in 
which the Orr-Sommerfeld equation is derived : 

A4, = - a3 Ui - ia, $I,, 

A$, = -8, W-iP,$I,, 

where the operator A is defined as follows 

and 

(d2/dy2 - k2) 
A = ia,(U,+ W tan#--,)- 

Re3 
, 

( -Ad; + ia, 8,( Ui + W' tan #)) 
k2 $3 = 

By first solving the Orr-Sommerfeld equation to obtain 8, and using that solution 
in (A 1) i t  is possible to determine 4,. One may note that if 8, is symmetric 4, will 
be antisymmetric since the forcing will have the opposite symmetry properties of a,. 
Note also that if the wave amplitude in the direction of the wavenumber vector 
((a34,+/I389,)/k) is desired the resulting combination of (A 1) and (A 2)  will become 
the continuity equation. 
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